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Integration  

Techniques of Integration 

U-Substitution

This is used to undo the chain rule for differentiation. Here are the steps: 

• Identify the inner function, a function whose derivative also appears in the integrand
and set it equal to 𝑢𝑢.

• Compute 𝑑𝑑𝑢𝑢 = 𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑥𝑥.
• Rewrite the integral in terms of 𝑢𝑢, there should not be any 𝑥𝑥. Sometimes, when

performing the initial 𝑢𝑢-substitution, we might need to express 𝑥𝑥’s in terms of 𝑢𝑢 and
vice-versa. For example, if 𝑢𝑢 = 𝑙𝑙𝑙𝑙(𝑥𝑥) ⟶ 𝑒𝑒𝑢𝑢 = 𝑥𝑥, if 𝑢𝑢 = 𝑥𝑥 − 2 ⟶  𝑢𝑢 + 3 = 𝑥𝑥 + 1.

• Integrate with respect to 𝑢𝑢 and substitute all the 𝑥𝑥’s back.

Integration by parts 

∫ 𝑢𝑢 𝑑𝑑𝑣𝑣 = 𝑢𝑢𝑣𝑣 − ∫ 𝑣𝑣 𝑑𝑑𝑢𝑢 
Always select 𝑢𝑢 in this order (LIATE): Logarithmic, Inverse Trigonometric, Algebraic expression, 
Trigonometric and Exponential, then set 𝑑𝑑𝑣𝑣 with to remaining part. Best used when we have a 
polynomial that multiplies a trigonometric function, exponential or logarithmic. 

A special case – boomerang 

The boomerang case in integration by parts happens when applying the integration by parts 
formula to an integral eventually brings you back to the original integral. This apparent loop can 
be used to solve the integral through algebraic manipulation. This case is common with 
trigonometric functions and exponential functions together. 

Trigonometric integrals 

Use trigonometric identities/formulas like the ones below to simplify the integral as much as 
possible. If we have a product of sines and cosines: 

∫ sin𝑛𝑛(𝑥𝑥) cos𝑚𝑚(𝑥𝑥)𝑑𝑑𝑥𝑥 

If the exponent on the sine functions (𝑙𝑙) is odd, we can extract one sine term and convert the 
remaining terms to cosines using sin2(𝑥𝑥) + cos2(𝑥𝑥) = 1, and then use 𝑢𝑢 = cos(𝑥𝑥). Similarly, if 
𝑚𝑚 is odd, take out one cosine and convert the rest of the sines with 𝑢𝑢 = sin(𝑥𝑥). If 𝑙𝑙 and 𝑚𝑚 are 
odd, convert the term with the smallest exponent. 
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Integration  

if 𝑙𝑙 and 𝑚𝑚 are even, most of the time those types of integrals can be solved using the 6th, 7th or 
8th formula below. By reducing these integrals, sometimes we will run across products of sine 
and cosine in which the arguments are different. In that case, we should use the formulas 12th, 
13th or 14th below. 

What if we have a product of tangent and secants? 
∫ sec𝑛𝑛(𝑥𝑥) tan𝑚𝑚(𝑥𝑥)𝑑𝑑𝑥𝑥 

If we use the substitution 𝑢𝑢 = tan(𝑥𝑥), we need two secants remaining for the substitution to 
work. Therefore, if the exponent on the secant (𝑙𝑙) is even, we can factor out two secants and 
then convert the remaining secants to tangents using equation 11 below. Alternatively, if we use 
the substitution 𝑢𝑢 = sec(𝑥𝑥), we need one secant and one tangent left for the substitution. 
Thus, if the exponent on the tangent (𝑚𝑚) is odd and there is at least one secant in the integrand, 
we can extract one tangent and one secant. This will make the exponent on the tangent even, 
allowing us to use equation 11 below to convert the remaining tangents to secants. Note that 
this method requires at least one secant in the integral. If there are no secants, a different 
approach is needed. 

When the exponent on the secant is even and the exponent on the tangent is odd, either 
method can be used. However, it is generally easier to convert the term with the smallest 
exponent. 

1. ∫ tan𝑛𝑛(𝑥𝑥)𝑑𝑑𝑥𝑥 = tan𝑛𝑛−1(𝑥𝑥)
𝑛𝑛−1

− ∫ tan𝑛𝑛−2(𝑥𝑥)𝑑𝑑𝑥𝑥, 𝑙𝑙 ≠ 1

2. ∫ sec𝑛𝑛(𝑥𝑥)𝑑𝑑𝑥𝑥 = sec𝑛𝑛−2(𝑥𝑥) tan(𝑥𝑥)
𝑛𝑛−1

+ 𝑛𝑛−2
𝑛𝑛−1

∫ sec𝑛𝑛−2(𝑥𝑥)𝑑𝑑𝑥𝑥, 𝑙𝑙 ≠1 

3. ∫ cot𝑛𝑛(𝑥𝑥)𝑑𝑑𝑥𝑥 = − cot𝑛𝑛−1(𝑥𝑥)
𝑛𝑛−1

− ∫ cot𝑛𝑛−2(𝑥𝑥)𝑑𝑑𝑥𝑥, 𝑙𝑙 ≠ 1

4. ∫ sin𝑛𝑛(𝑥𝑥)𝑑𝑑𝑥𝑥 = − 1
𝑛𝑛

cos(𝑥𝑥) sin𝑛𝑛−1(𝑥𝑥) + 𝑛𝑛−1
𝑛𝑛
∫ sin𝑛𝑛−2(𝑥𝑥)𝑑𝑑𝑥𝑥 

5. ∫ cos𝑛𝑛(𝑥𝑥)𝑑𝑑𝑥𝑥 = 1
𝑛𝑛

sin(𝑥𝑥) cos𝑛𝑛−1(𝑥𝑥) + 𝑛𝑛−1
𝑛𝑛
∫ cos𝑛𝑛−2(𝑥𝑥)𝑑𝑑𝑥𝑥 

6. cos2(𝑥𝑥) = 1+cos(2𝑥𝑥)
2

7. sin2(𝑥𝑥) = 1−cos(2𝑥𝑥)
2

8. sin(2𝑥𝑥) = 2 sin(𝑥𝑥)cos (𝑥𝑥)
9. sin2(𝑥𝑥) + cos2(𝑥𝑥) = 1
10. 1 + cot2(𝑥𝑥) = csc2(𝑥𝑥)
11. 1 + tan2(𝑥𝑥) = sec2(𝑥𝑥)
12. sin(𝑎𝑎) cos(𝑏𝑏) = 1

2
[sin(𝑎𝑎 − 𝑏𝑏) + sin (𝑎𝑎 + 𝑏𝑏)] 

13. sin(𝑎𝑎) sin(𝑏𝑏) = 1
2

[cos(𝑎𝑎 − 𝑏𝑏) − cos (𝑎𝑎 + 𝑏𝑏)] 

14. cos(𝑎𝑎) cos(𝑏𝑏) = 1
2

[cos(𝑎𝑎 − 𝑏𝑏) + cos (𝑎𝑎 + 𝑏𝑏)] 
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Trigonometric substitution 

If we have �𝑘𝑘𝑥𝑥2 ± 𝑎𝑎2 or √𝑎𝑎2 − 𝑘𝑘𝑥𝑥2  where 𝑘𝑘 > 0 is a constant. Then: 

 �𝑘𝑘𝑥𝑥2 ± 𝑎𝑎2 =  √𝑘𝑘�𝑥𝑥2 ± 𝑎𝑎2

𝑘𝑘
 and √𝑎𝑎2 − 𝑘𝑘𝑥𝑥2 = √𝑘𝑘�𝑎𝑎2

𝑘𝑘
− 𝑥𝑥2

In some rare cases, we might have √𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 on the denominator, in that case, we must 

complete the square; 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = 𝑎𝑎 �𝑥𝑥 + 𝑏𝑏
2𝑎𝑎
�
2

+ �𝑐𝑐 − 𝑏𝑏2

4𝑎𝑎
�

sec tan sin 
Integral contains �𝑥𝑥2 − 𝑎𝑎2 �𝑥𝑥2 + 𝑎𝑎2 �𝑎𝑎2 − 𝑥𝑥2 

Substitute 𝑥𝑥 = 𝑎𝑎 sec(𝜃𝜃) 𝑥𝑥 = 𝑎𝑎 tan(𝜃𝜃) 𝑥𝑥 = 𝑎𝑎 sin(𝜃𝜃) 
Use identity 𝑠𝑠𝑒𝑒𝑐𝑐2(𝜃𝜃) − 1 = 𝑡𝑡𝑎𝑎𝑙𝑙2(𝜃𝜃) 𝑠𝑠𝑒𝑒𝑐𝑐2(𝜃𝜃) = 𝑡𝑡𝑎𝑎𝑙𝑙2(𝜃𝜃) + 1 1 − sin2(𝜃𝜃) = cos2(𝜃𝜃) 

Express trigonometric 
with x 

sec(𝜃𝜃) =
𝑥𝑥
𝑎𝑎

tan(𝜃𝜃) =
𝑥𝑥
𝑎𝑎

sin(𝜃𝜃) =
𝑥𝑥
𝑎𝑎

𝑑𝑑𝜃𝜃 𝑑𝑑𝑥𝑥 = 𝑎𝑎 sec(𝜃𝜃) tan(𝜃𝜃)𝑑𝑑𝜃𝜃 𝑑𝑑𝑥𝑥 = 𝑎𝑎 sec2(𝜃𝜃) 𝑑𝑑𝑥𝑥 = 𝑎𝑎 cos(𝜃𝜃) 
𝜃𝜃 𝜃𝜃 = arcsec �

𝑥𝑥
𝑎𝑎
� 𝜃𝜃 = arctan �

𝑥𝑥
𝑎𝑎
� 𝜃𝜃 = arcsin �

𝑥𝑥
𝑎𝑎
� 

Triangle 

√𝑥𝑥2 − 𝑎𝑎2  𝑥𝑥 
 𝜃𝜃 
𝑎𝑎 

 𝑥𝑥 √𝑥𝑥2 + 𝑎𝑎2
 𝜃𝜃 
 𝑎𝑎 

 𝑥𝑥   𝑎𝑎 
 𝜃𝜃 

√𝑎𝑎2 − 𝑥𝑥2
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Partial Fractions 

When an integral is a fraction of the form: 
𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛+𝑎𝑎𝑛𝑛−1𝑥𝑥+𝑛𝑛−1…𝑎𝑎1𝑥𝑥+𝑎𝑎0

𝑏𝑏𝑚𝑚𝑥𝑥𝑚𝑚+𝑏𝑏𝑚𝑚−1𝑥𝑥𝑚𝑚−1+⋯𝑏𝑏1𝑥𝑥+𝑏𝑏0
 with 𝑙𝑙 < 𝑚𝑚 (if 𝑚𝑚 =

𝑙𝑙, perform long division) and 𝑏𝑏𝑚𝑚𝑥𝑥𝑚𝑚 + 𝑏𝑏𝑚𝑚−1𝑥𝑥𝑚𝑚−1 + ⋯𝑏𝑏1𝑥𝑥 + 𝑏𝑏0 (the denominator) can
be factored into linear and/or irreducible quadratic factors.  

First, completely factor the denominator and: 

• For each distinct linear factor (𝑎𝑎𝑥𝑥 + 𝑏𝑏), set the fraction above equal to 𝐴𝐴
𝑎𝑎1𝑥𝑥+𝑏𝑏1

+
𝐵𝐵

𝑎𝑎2𝑥𝑥+𝑏𝑏2
+ ⋯, In most cases, 𝑎𝑎 = 1.

• For each repeated linear factor (𝑎𝑎𝑥𝑥 + 𝑏𝑏), set the fraction above equal to 𝐴𝐴
(𝑎𝑎𝑥𝑥+𝑏𝑏) +

𝐵𝐵
(𝑎𝑎𝑥𝑥+𝑏𝑏)2 + ⋯, In most cases, 𝑎𝑎 = 1.

• For each distinct quadratic factor (𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐), set the fraction above equal to
𝐴𝐴𝑥𝑥+𝐵𝐵

𝑎𝑎1𝑥𝑥2+𝑏𝑏1𝑥𝑥+𝑐𝑐1
+ 𝐶𝐶𝐶𝐶+𝐷𝐷

𝑎𝑎2𝑥𝑥2+𝑏𝑏2𝑥𝑥+𝑐𝑐2
+ ⋯, In most cases, 𝑎𝑎 = 1 and 𝑏𝑏 = 0.

• For each repeated quadratic factor (𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐), set the fraction above equal to
𝐴𝐴𝑥𝑥+𝐵𝐵

(𝑎𝑎𝑥𝑥2+𝑏𝑏𝑥𝑥+𝑐𝑐) + 𝐶𝐶𝐶𝐶+𝐷𝐷
(𝑎𝑎𝑥𝑥2+𝑏𝑏𝑥𝑥+𝑐𝑐)2 + ⋯, In most cases, 𝑎𝑎 = 1 and 𝑏𝑏 = 0.

Secondly 

• Combine the partial fractions over a common denominator and equate the numerator of this
expression to the numerator of the original rational function.

• Solve the resulting system of linear equations to find the unknown coefficients.
• Integrate.
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Common Antiderivatives 
∫ 𝑘𝑘 𝑑𝑑𝑥𝑥 = 𝑘𝑘𝑥𝑥 + 𝐶𝐶 

 
∫ sec(𝑥𝑥) tan(𝑥𝑥)𝑑𝑑𝑥𝑥 = sec (𝑥𝑥) + 𝐶𝐶 ∫ 0𝑑𝑑𝑥𝑥 = 𝐶𝐶 

          ∫ 𝑥𝑥𝑛𝑛 𝑑𝑑𝑥𝑥 = 𝑥𝑥𝑛𝑛+1

𝑛𝑛+1
+ 𝐶𝐶, 𝑙𝑙 ≠ −1 

 

∫ sec2(𝑥𝑥)𝑑𝑑𝑥𝑥 = tan (𝑥𝑥) + 𝐶𝐶 ∫ 𝑙𝑙𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑥𝑥 𝑙𝑙𝑙𝑙(𝑥𝑥) − 𝑥𝑥 + 𝐶𝐶 

∫ 𝑥𝑥−1 𝑑𝑑𝑥𝑥 = ∫
1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑙𝑙𝑙𝑙|𝑥𝑥| + 𝐶𝐶 

 

∫ csc(𝑥𝑥) cot(𝑥𝑥)𝑑𝑑𝑥𝑥 = −csc (𝑥𝑥) + 𝐶𝐶 ∫ |𝑥𝑥|𝑑𝑑𝑥𝑥 =
|𝑥𝑥|𝑥𝑥

2
+ 𝐶𝐶 

 ∫
𝑎𝑎𝑥𝑥 + 𝑏𝑏
𝑐𝑐𝑥𝑥 + 𝑑𝑑

𝑑𝑑𝑥𝑥 =
(𝑏𝑏𝑐𝑐 − 𝑎𝑎 𝑑𝑑) 𝑙𝑙𝑙𝑙|𝑐𝑐𝑥𝑥 + 𝑑𝑑|

𝑐𝑐2

+
𝑎𝑎𝑥𝑥
𝑐𝑐

+ 𝐶𝐶 , 𝑐𝑐 ≠ 0 

 
 

∫
1

√1 − 𝑥𝑥2
𝑑𝑑𝑥𝑥 = arcsin(𝑥𝑥) + 𝐶𝐶 ∫ (𝑎𝑎𝑥𝑥 + 𝑏𝑏)𝑛𝑛 𝑑𝑑𝑥𝑥 =

(𝑎𝑎𝑥𝑥 + 𝑏𝑏)𝑛𝑛+1

𝑎𝑎(𝑙𝑙 + 1) + 𝐶𝐶,𝑙𝑙 ≠ −1 

∫ 𝑎𝑎𝑘𝑘𝑥𝑥 𝑑𝑑𝑥𝑥 =
𝑎𝑎𝑘𝑘𝑥𝑥

𝑘𝑘𝑙𝑙𝑙𝑙(𝑎𝑎) + 𝐶𝐶 

 

∫ −
1

√1 − 𝑥𝑥2
𝑑𝑑𝑥𝑥 = arccos(𝑥𝑥) + 𝐶𝐶 ∫

1
𝑎𝑎𝑥𝑥 + 𝑏𝑏

𝑑𝑑𝑥𝑥 =
𝑙𝑙𝑙𝑙|𝑎𝑎𝑥𝑥 + 𝑏𝑏|

𝑎𝑎
+ 𝐶𝐶 

∫ 𝑒𝑒𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑒𝑒𝑥𝑥 + 𝐶𝐶 
 

∫ csc2(𝑥𝑥)𝑑𝑑𝑥𝑥 = −cot (𝑥𝑥) + 𝐶𝐶 ∫ sin2(𝑥𝑥)𝑑𝑑𝑥𝑥 =
𝑥𝑥
2
−

sin(2𝑥𝑥)
4

+ 𝐶𝐶 

∫ sin(𝑎𝑎𝑥𝑥)𝑑𝑑𝑥𝑥 =
− cos(𝑎𝑎𝑥𝑥)

𝑎𝑎
+ 𝐶𝐶 

 

∫ sec(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑙𝑙𝑙𝑙|sec(𝑥𝑥) + tan(𝑥𝑥)|
+ 𝐶𝐶 ∫ cos2(𝑥𝑥)𝑑𝑑𝑥𝑥 =

𝑥𝑥
2

+
sin(2𝑥𝑥)

4
+ 𝐶𝐶 

∫ cos(𝑎𝑎𝑥𝑥)𝑑𝑑𝑥𝑥 =
sin(𝑎𝑎𝑥𝑥)

𝑎𝑎
+ 𝐶𝐶 

 

∫ csc(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑙𝑙𝑙𝑙|csc(𝑥𝑥) − cot(𝑥𝑥)|
+ 𝐶𝐶 

∫ 𝑙𝑙𝑙𝑙𝑔𝑔𝑎𝑎(𝑥𝑥)𝑑𝑑 𝑥𝑥 = 𝑥𝑥 𝑙𝑙𝑙𝑙𝑔𝑔𝑎𝑎(𝑥𝑥) −
𝑥𝑥

𝑙𝑙𝑙𝑙(𝑎𝑎) + 𝐶𝐶 

∫
1

1 + x2
dx = arctan(x) + 𝐶𝐶 

 

∫ tan(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑙𝑙𝑙𝑙 |sec(𝑥𝑥)| + 𝐶𝐶 ∫ arccos(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑥𝑥arccos(𝑥𝑥) −�1 − 𝑥𝑥2
+ 𝐶𝐶 

∫
1

1 + 𝑎𝑎𝑥𝑥2
𝑑𝑑𝑥𝑥 =

arctan�√𝑎𝑎𝑥𝑥�
√𝑎𝑎

+ 𝐶𝐶 
∫ cot(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑙𝑙𝑙𝑙 |sin(𝑥𝑥)| + 𝐶𝐶 ∫ arccos(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑥𝑥arcsin(𝑥𝑥) + �1 − 𝑥𝑥2

+ 𝐶𝐶 
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Improper Integrals 

For an integral  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎  to be considered improper, there are two possibilities. 

1. First, either  𝑎𝑎 𝑙𝑙𝑜𝑜 𝑏𝑏 is ±∞ (Type 1) 
∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
−∞ = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑐𝑐

−∞ + ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑐𝑐 , where 𝑎𝑎 < 𝑐𝑐 < 𝑏𝑏 

 
2. Second, there is a discontinuity in the domain of the function either at 𝑥𝑥 = 𝑎𝑎, 𝑥𝑥 = 𝑏𝑏 or 

within (𝑎𝑎, 𝑏𝑏). There can be multiple discontinuities. 

More precisely: 

- If 𝑓𝑓(𝑥𝑥) is continuous on [𝑎𝑎, 𝑏𝑏) and discontinuous at 𝑥𝑥 = 𝑏𝑏 : ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 = 𝑙𝑙𝑙𝑙𝑚𝑚

𝑘𝑘→𝑏𝑏−
∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑘𝑘
𝑎𝑎 , 

provided the limit exists. 
 

- If 𝑓𝑓(𝑥𝑥) is continuous on (𝑎𝑎, 𝑏𝑏] and discontinuous at 𝑥𝑥 = 𝑎𝑎 : ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 = 𝑙𝑙𝑙𝑙𝑚𝑚

𝑘𝑘→𝑎𝑎+
∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑘𝑘 , 

provided the limit exists. 
 

- If 𝑓𝑓(𝑥𝑥) is discontinuous at 𝑥𝑥 = 𝑐𝑐, where 𝑎𝑎 < 𝑐𝑐 < 𝑏𝑏 and ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑐𝑐
𝑎𝑎  and ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏

𝑐𝑐  are both 

convergent, then: ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑐𝑐

𝑎𝑎 + ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑐𝑐 . Note that both integrals must be 

convergent. If at least one integral is divergent, all the integral is divergent. 
 

- If 𝑓𝑓(𝑥𝑥) is discontinuous at 𝑥𝑥 = 𝑎𝑎 and 𝑥𝑥 = 𝑏𝑏 and if ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑐𝑐
𝑎𝑎  and ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏

𝑐𝑐  are both 

convergent, then ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑐𝑐

𝑎𝑎 + ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑐𝑐 . Again, this requires both integrals 

to be convergent for this integral to be convergent as well. 

Types of possible discontinuities a function can have in the interval [𝑎𝑎, 𝑏𝑏] (This list is not 
exhaustive). 

• A negative square root 
• A logarithm smaller or equal to zero 
• A division by zero 

P-Integrals 

If 𝑎𝑎 > 0, � 1
𝑥𝑥𝑝𝑝
𝑑𝑑𝑥𝑥

∞

𝑎𝑎
 converges if 𝑝𝑝 > 1 and is equal to: - 𝑎𝑎

1−𝑝𝑝

1−𝑝𝑝
 . If 𝑝𝑝 ≤ 1, the integral diverges 

For 𝑎𝑎 > 0 , If 𝑝𝑝 < 1, the integral � 1
𝑥𝑥𝑝𝑝
𝑑𝑑𝑥𝑥

𝑎𝑎

0
 converges and is equal to: 𝑎𝑎

1−𝑝𝑝

1−𝑝𝑝
 . If 𝑝𝑝 ≥ 1, the integral 

diverges. 
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Integration  

The Fundamental Theorem of Calculus, Part 1 

If 𝑓𝑓(𝑥𝑥) is continuous on the interval [𝑎𝑎, 𝑏𝑏] and a function 𝐹𝐹(𝑥𝑥) is defined as: 𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡𝑥𝑥
𝑎𝑎  

Then: 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) over [𝑎𝑎, 𝑏𝑏] 

Given Integral  How to solve it 

𝐹𝐹(𝑥𝑥) = �𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑥𝑥

𝑎𝑎

 
 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) 

   

𝐹𝐹(𝑥𝑥) = �𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑎𝑎

𝑥𝑥

 
 𝐹𝐹′(𝑥𝑥) = −𝑓𝑓(𝑥𝑥) 

   

𝐹𝐹(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡

𝑔𝑔(𝑥𝑥)

𝑎𝑎

 
 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓�𝑔𝑔(𝑥𝑥)� ⋅ 𝑔𝑔′(𝑥𝑥) 

   

𝐹𝐹(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑎𝑎

𝑔𝑔(𝑥𝑥)

 
 𝐹𝐹′(𝑥𝑥) = −𝑓𝑓�𝑔𝑔(𝑥𝑥)� ⋅ 𝑔𝑔′(𝑥𝑥) 

 

   

𝐹𝐹(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡

ℎ(𝑥𝑥)

𝑔𝑔(𝑥𝑥)

 
 ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡ℎ(𝑥𝑥)

𝑔𝑔(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝑎𝑎
𝑔𝑔(𝑥𝑥) +∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 =ℎ(𝑥𝑥)

𝑎𝑎 𝑓𝑓�ℎ(𝑥𝑥)� ⋅ ℎ′(𝑥𝑥) − 𝑓𝑓�𝑔𝑔(𝑥𝑥)� ⋅ 𝑔𝑔′(𝑥𝑥) 
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Integration  

The Fundamental Theorem of Calculus, Part 2 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎), where 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥). 𝐹𝐹(𝑥𝑥) is any 

antiderivative of 𝑓𝑓(𝑥𝑥). 
Properties of definite integrals 

�𝑐𝑐 𝑑𝑑𝑥𝑥 = 𝑐𝑐(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏

𝑎𝑎

 

�(𝑓𝑓(𝑥𝑥) ± 𝑔𝑔(𝑥𝑥))𝑑𝑑𝑥𝑥 =
𝑏𝑏

𝑎𝑎

�𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 ±
𝑏𝑏

𝑎𝑎

�𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

 

�𝑐𝑐𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

= 𝑐𝑐 �𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

 

�𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

= −�𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑎𝑎

𝑏𝑏

 

�𝑓𝑓(𝑥𝑥) d𝑥𝑥 =
𝑏𝑏

𝑎𝑎

�𝑓𝑓(𝑥𝑥) d𝑥𝑥 ±
𝑐𝑐

𝑎𝑎

�𝑓𝑓(𝑥𝑥) d𝑥𝑥
𝑏𝑏

𝑐𝑐

 if 𝑎𝑎 < 𝑐𝑐 < 𝑏𝑏 

�𝑓𝑓(𝑥𝑥) d𝑥𝑥 =
𝑎𝑎

−𝑎𝑎

2�𝑓𝑓(𝑥𝑥) d𝑥𝑥
𝑎𝑎

0

 if 𝑓𝑓(𝑥𝑥) is even 

�𝑓𝑓(𝑥𝑥) d𝑥𝑥 =
𝑎𝑎

−𝑎𝑎

0 if 𝑓𝑓(𝑥𝑥) is odd 

�� 𝑓𝑓(𝑥𝑥) d𝑥𝑥
𝑏𝑏

𝑎𝑎

� ≤ � |𝑓𝑓(𝑥𝑥)| d𝑥𝑥
𝑏𝑏

𝑎𝑎
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Integration  

Special Integrals – Absolute Values 

If we have an integral of the form ∫ |𝑓𝑓(𝑥𝑥)| d𝑥𝑥𝑏𝑏
𝑎𝑎 : 

• Solve the integral for when the function inside the absolute value changes sign (when
𝑓𝑓(𝑥𝑥) = 0 or has a potential asymptote.

• Plot a number line and identify where on [𝑎𝑎, 𝑏𝑏] the function is 𝑓𝑓(𝑥𝑥) < 0.
• Split the integral on the points found above and put a minus sign when the function is

smaller than zero.
• Integrate each piece.

Example: 

�|𝑥𝑥2 − 5𝑥𝑥 + 6|𝑑𝑑𝑥𝑥
5

1

 

𝑥𝑥2 − 5𝑥𝑥 + 6 = 0 when 𝑥𝑥 = 2 or 𝑥𝑥 = 3 

Now, we will always test the number of points we found plus one. In this case, we will test three 
numbers: One smaller than 2, one between 2 and 3(excluding 2 and 3) and one larger than 3. 
They can be any number. They do not have to be within the bounds of integration. 

Say we pick 𝑥𝑥 = 0, 𝑥𝑥 = 2.5, 𝑥𝑥 = 4 

Now test 𝑓𝑓(𝑥𝑥) for those numbers: 

𝑓𝑓(0) = 6, 𝑓𝑓(2.5) = −0.25, 𝑓𝑓(4) = 2 

With that information we complete our number line. 

Our integral becomes then: ∫ |𝑥𝑥2 − 5𝑥𝑥 + 6| 𝑑𝑑𝑥𝑥 =5
1  

�(𝑥𝑥2 − 5𝑥𝑥 + 6) 𝑑𝑑𝑥𝑥 −
2

1

�(𝑥𝑥2 − 5𝑥𝑥 + 6)𝑑𝑑𝑥𝑥 +
3

2

�(𝑥𝑥2 − 5𝑥𝑥 + 6)𝑑𝑑𝑥𝑥 =
5

3

5
6
− �−

1
6
� +

28
6

=
34
6

2 3

2 3 6 > 0 -0.25 < 0 2 > 0 
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Integration - Applications 

Volumes, Surface area of Revolution, Arc length and Areas between 
Curves 
Volumes 

Axis of revolution is vertical (y-axis or x=k, where k is a constant) 

 

 Disks  Washers Shells 
𝑦𝑦 − 𝑎𝑎𝑥𝑥𝑙𝑙𝑠𝑠 
or 𝑥𝑥 = 0 �𝜋𝜋�𝑓𝑓(𝑦𝑦)�

2
𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎

 �𝜋𝜋�𝑓𝑓(𝑦𝑦)�
2
− 𝜋𝜋�𝑔𝑔(𝑦𝑦)�

2
𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎

 �2𝜋𝜋𝑥𝑥[𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥)]𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

 

𝑥𝑥 = 𝑘𝑘 / 
�𝜋𝜋�𝑘𝑘 − 𝑔𝑔(𝑦𝑦)�

2
− 𝜋𝜋�𝑘𝑘 − 𝑓𝑓(𝑦𝑦)�

2
𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎

 � 2𝜋𝜋(𝑘𝑘 − 𝑥𝑥)[𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥)]𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

 

𝑥𝑥 = −𝑘𝑘 / 
�𝜋𝜋�𝑘𝑘 + 𝑓𝑓(𝑦𝑦)�

2
− 𝜋𝜋(𝑘𝑘 + 𝑔𝑔(𝑦𝑦))2 𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎

 � 2𝜋𝜋(𝑘𝑘 + 𝑥𝑥)[𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥)]𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

 

 

 

 Axis of revolution is horizontal (x-axis or y=k, where k is a constant) 

 

 Disks  Washers Shells 
𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑙𝑙𝑠𝑠 
or 𝑦𝑦 = 0 �𝜋𝜋�𝑓𝑓(𝑥𝑥)�

2
𝑑𝑑𝑥𝑥

𝑏𝑏

𝑎𝑎

 �𝜋𝜋�𝑓𝑓(𝑥𝑥)�
2
− 𝜋𝜋�𝑔𝑔(𝑥𝑥)�

2
𝑑𝑑𝑥𝑥

𝑏𝑏

𝑎𝑎

 � 2𝜋𝜋𝑥𝑥[𝑓𝑓(𝑦𝑦) − 𝑔𝑔(𝑦𝑦)]𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

 

𝑦𝑦 = 𝑘𝑘 / 
�𝜋𝜋�𝑘𝑘 − 𝑔𝑔(𝑥𝑥)�

2
− 𝜋𝜋�𝑘𝑘 − 𝑓𝑓(𝑥𝑥)�

2
𝑑𝑑𝑥𝑥

𝑏𝑏

𝑎𝑎

 �2𝜋𝜋(𝑘𝑘 − 𝑦𝑦)[𝑓𝑓(𝑦𝑦) − 𝑔𝑔(𝑦𝑦)]𝑑𝑑𝑦𝑦
𝑏𝑏

𝑎𝑎

 

𝑦𝑦 = −𝑘𝑘 / 
�𝜋𝜋�𝑘𝑘 + 𝑓𝑓(𝑥𝑥)�

2
− 𝜋𝜋(𝑘𝑘 + 𝑔𝑔(𝑥𝑥))2 𝑑𝑑𝑥𝑥

𝑏𝑏

𝑎𝑎

 �2𝜋𝜋(𝑘𝑘 + 𝑦𝑦)[𝑓𝑓(𝑦𝑦) − 𝑔𝑔(𝑦𝑦)]𝑑𝑑𝑦𝑦
𝑏𝑏

𝑎𝑎
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Integration - Applications 

Surface area of revolution 

Use 𝑆𝑆 = � 2𝜋𝜋𝑥𝑥�1 + �𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
�
2
𝑑𝑑𝑥𝑥

𝑏𝑏

𝑎𝑎

 if: 

Function is in the form 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and the function is rotating around the 𝑦𝑦 − axis, in the interval 
[𝑎𝑎, 𝑏𝑏]. 

Use 𝑆𝑆 = � 2𝜋𝜋𝑦𝑦�1 + �𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
�
2
𝑑𝑑𝑥𝑥

𝑏𝑏

𝑎𝑎

 if: 

Function is in the form 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and the function is rotating around the 𝑥𝑥 − axis, in the interval 
[𝑎𝑎, 𝑏𝑏]. Replace the 𝑦𝑦 in the integral by 𝑓𝑓(𝑥𝑥), everything should be in terms of 𝑥𝑥. 

 

Use 𝑆𝑆 = � 2𝜋𝜋𝑥𝑥�1 + �𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑
�
2
𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎

 if: 

Function is in the form 𝑥𝑥 = 𝑓𝑓(𝑦𝑦) and the function is rotating around the 𝑦𝑦 − axis, in the interval 
[𝑎𝑎, 𝑏𝑏].  Replace the 𝑥𝑥 in the integral by 𝑓𝑓(𝑦𝑦), everything should be in terms of 𝑦𝑦. 

 

Use 𝑆𝑆 = � 2𝜋𝜋𝑦𝑦�1 + �𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑
�
2
𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎

 if: 

Function is in the form 𝑥𝑥 = 𝑓𝑓(𝑦𝑦) and the function is rotating around the 𝑥𝑥 − axis, in the interval 
[𝑎𝑎, 𝑏𝑏]. 

 

Arc length 

If function is in the form 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) on  [𝑎𝑎, 𝑏𝑏]:  𝐿𝐿 = � �1 + (𝑓𝑓′(𝑥𝑥))2 𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎
= � �1 + �𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
�
2
𝑑𝑑𝑥𝑥

𝑏𝑏

𝑎𝑎

 

If function is in the form 𝑥𝑥 = 𝑓𝑓(𝑦𝑦) on  [𝑎𝑎, 𝑏𝑏]:  𝐿𝐿 = � �1 + (𝑓𝑓′(𝑦𝑦))2 𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎
= � �1 + �𝑑𝑑𝑥𝑥

𝑑𝑑𝑑𝑑
�
2
𝑑𝑑𝑦𝑦

𝑏𝑏

𝑎𝑎
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Integration - Applications 

Area between curves 

 

Vertical Slicing 

 

For two functions of the form 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and  𝑦𝑦 = 𝑔𝑔(𝑥𝑥), where 𝑓𝑓(𝑥𝑥) > 𝑔𝑔(𝑥𝑥) (𝑓𝑓(𝑥𝑥) is above on 
[𝑎𝑎, 𝑏𝑏]): 

 

Area = ∫ [𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥)]𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎  

 

Horizontal Slicing 

 

For two functions of the form 𝑥𝑥 = 𝑓𝑓(𝑦𝑦) and  𝑥𝑥 = 𝑔𝑔(𝑦𝑦), where 𝑓𝑓(𝑦𝑦) > 𝑔𝑔(𝑦𝑦)  (𝑓𝑓(𝑦𝑦) is on the 
right on [𝑎𝑎, 𝑏𝑏]: ) 

 

Area = ∫ [𝑓𝑓(𝑦𝑦) − 𝑔𝑔(𝑦𝑦)]𝑑𝑑𝑦𝑦𝑏𝑏
𝑎𝑎
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Integration - Applications 

 

Lorenz curve, Consumer and Producer Surplus 

Lorenz curve 

 

Used to study income inequality. 

 

 

 

 

 

 

 

 

 

Interpretation: 

Gini coefficient of zero – Perfectly equal income distribution.  

Gini coefficient of one – Perfectly unequal income distribution. 

Formula: 𝐺𝐺 = 2∫ (𝑥𝑥 − 𝐿𝐿(𝑥𝑥))𝑑𝑑𝑥𝑥1
0  

 

As the Gini coefficient increases, the more unequal income distribution is in that nation. 

 

 

Cumulative percentage of the population 
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Ideal income distribution 

Lorenz curve 
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Integration - Applications 

Consumer and Producer Surplus 

𝑆𝑆(𝑞𝑞)- Supply curve 

𝐷𝐷(𝑞𝑞)- Demand curve 

𝑃𝑃𝑚𝑚- Market price, first find the right 𝑞𝑞 , denoted as 𝐸𝐸𝑞𝑞 or equilibrium quantity by setting 
𝐷𝐷(𝑞𝑞) = 𝑆𝑆(𝑞𝑞). Then plug in the found 𝐸𝐸𝑞𝑞 in 𝐷𝐷(𝑞𝑞) or 𝑆𝑆(𝑞𝑞). 

 

Consumer Surplus: ∫ (𝐷𝐷(𝑞𝑞) − 𝑃𝑃𝑚𝑚)𝑑𝑑𝑞𝑞𝐸𝐸𝑞𝑞
0  

Producer Surplus: ∫ (𝑃𝑃𝑚𝑚 − 𝑆𝑆(𝑞𝑞))𝑑𝑑𝑞𝑞𝐸𝐸𝑞𝑞
0  

Total Surplus = Consumer Surplus+ Producer Surplus 
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Integration - Applications 

Separable Differential equations -   Exponential growth and decay, 
Logistic Model 

Separable differential equations framework 

Goal: Then integrate both sides (with their respective variables) after having “separated” the 𝑥𝑥’s 
and the 𝑦𝑦 ’s and either find a general or a particular solution. 

𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑔𝑔(𝑦𝑦)𝑑𝑑𝑦𝑦 → ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = ∫ 𝑔𝑔(𝑦𝑦)𝑑𝑑𝑦𝑦 → 𝐹𝐹(𝑥𝑥) + 𝐶𝐶 = 𝐺𝐺(𝑦𝑦), where 𝐹𝐹(𝑥𝑥) and 𝐺𝐺(𝑦𝑦) 
respectively are the antiderivatives of 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑦𝑦). 

 

Exponential Growth and Decay 

 

 Exponential Growth 

𝑃𝑃(𝑡𝑡) = 𝑃𝑃0𝑒𝑒𝑘𝑘𝑘𝑘, where 𝑃𝑃0 is the initial condition (usually a population). Can also be given in terms 
of a separable differential equation. 

 

To find the growth rate 𝑘𝑘, when a population 𝑙𝑙 − tuples after 𝑚𝑚 − “units of time” (usually 
years): 

𝑘𝑘 =
𝑙𝑙𝑙𝑙(𝑙𝑙)
𝑚𝑚

 

For example:  

Doubles in five years: 𝑘𝑘 = 𝑙𝑙𝑛𝑛(2)
5

 

Quadruples in ten years: 𝑘𝑘 = 𝑙𝑙𝑛𝑛(4)
10

 

Exponential Decay 

Exponential Decay is very similar to exponential growth, except that it is usually used to model 
things like a decaying substance after 𝑡𝑡 years. The 𝑘𝑘 must be negative. 

Half-Life case: If the half life of a substance is 𝑇𝑇 years, then: 

 𝑘𝑘 = 𝑙𝑙𝑛𝑛(0.5)
𝑇𝑇

 

 

 

@ Pi Pinnacle Tutors 15



 
Integration - Applications 

Another more general case: If a fraction 1
𝑛𝑛

 of the substance remains after 𝑇𝑇 years, then: 

𝑘𝑘 =
𝑙𝑙𝑙𝑙 �1

𝑙𝑙�
𝑇𝑇

 

For example:  

25% of a substance remains after five years: 25% = 1
4
 → 𝑘𝑘 =

𝑙𝑙𝑛𝑛(14)

5
. It is not necessary to 

transform 25% into a fraction, 𝑙𝑙𝑛𝑛(25%)
5

  yields the same result. 

 

Logistic Differential Equation 

𝑑𝑑𝑃𝑃
𝑑𝑑𝑘𝑘

= 𝑘𝑘𝑃𝑃 �1 − 𝑃𝑃
𝑀𝑀
� → Given the initial condition 𝑃𝑃(0) = 𝑃𝑃0: 𝑃𝑃(𝑡𝑡) = 𝑀𝑀

1+�𝑀𝑀−𝑃𝑃0
𝑃𝑃0

�𝑒𝑒−𝑘𝑘𝑘𝑘
 

This model is also used to model population growth, however, unlike the exponential growth 
model, this model imposes a restrain. 

𝑘𝑘: Growth rate 

𝑀𝑀: This is the carrying capacity of the environment. It represents the maximum population size 
that the environment can sustain indefinitely due to limited resources like food, space, and 
other environmental factors. 
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Integration - Applications 

Riemann Sums as a Definite Integral 
Estimating the area under a curve using 𝒏𝒏 rectangles 

𝛥𝛥𝑥𝑥 =
𝑏𝑏 − 𝑎𝑎
𝑙𝑙

 

𝑥𝑥𝑖𝑖∗ = 𝑎𝑎 + 𝑙𝑙𝛥𝛥𝑥𝑥 

Left endpoint: 𝐿𝐿𝑛𝑛 = � 𝛥𝛥𝑥𝑥𝑓𝑓(𝑥𝑥𝑖𝑖∗)
𝑛𝑛−1
𝑖𝑖=0  

Right endpoint: 𝑅𝑅𝑛𝑛 = � 𝛥𝛥𝑥𝑥𝑓𝑓(𝑥𝑥𝑖𝑖∗)
𝑛𝑛
𝑖𝑖=1  

Midpoint: 𝑀𝑀𝑛𝑛 = � 𝛥𝛥𝑥𝑥𝑓𝑓(𝑥𝑥𝑖𝑖−0.5
∗ )𝑛𝑛

𝑖𝑖=1  

Example: Using four rectangles, calculate the area under 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 on [4,5], using the left and 
right endpoints as well as the midpoint. 

𝛥𝛥𝑥𝑥 =
5 − 4

4
= 0.25 

𝑥𝑥𝑖𝑖∗ = 4 + 0.25𝑙𝑙 

𝑥𝑥𝑖𝑖−0.5
∗ = 4 + 0.25(𝑙𝑙 − 0.5) = 3.875 + 0.25𝑙𝑙 

 

Left endpoint:  

∑ 0.25𝑓𝑓(4 + 1.25𝑙𝑙)3
𝑖𝑖=0 =0.25[𝑓𝑓(4) + 𝑓𝑓(4.25) + 𝑓𝑓(4.5) + 𝑓𝑓(4.75)] = 19.21875 

Right endpoint:  

∑ 0.25𝑓𝑓(4 + 1.25𝑙𝑙)4
𝑖𝑖=1 =0.25[𝑓𝑓(4.25) + 𝑓𝑓(4.5) + 𝑓𝑓(4.75) + 𝑓𝑓(5)] = 21.46875 

Midpoint: 

∑ 0.25𝑓𝑓(3.875 + 0.25𝑙𝑙)4
𝑖𝑖=1 =0.25[𝑓𝑓(4.125) + 𝑓𝑓(4.375) + 𝑓𝑓(4.625) + 𝑓𝑓(4.875)] =

20.328125 
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Integration - Applications 

Finding the exact area using Riemann sums 

�𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎

= 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�𝛥𝛥𝑥𝑥𝑓𝑓(𝑥𝑥𝑖𝑖∗)
𝑛𝑛

𝑖𝑖=1

 

Where: 

𝛥𝛥𝑥𝑥 =
𝑏𝑏 − 𝑎𝑎
𝑙𝑙

 

𝑥𝑥𝑖𝑖∗ = 𝑎𝑎 + 𝑙𝑙𝛥𝛥𝑥𝑥 

Usually, these kinds of limits will always yield to a rational function involving polynomials of the 
form: 

 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝑎𝑎𝑚𝑚𝑥𝑥𝑚𝑚+𝑎𝑎𝑚𝑚−1𝑥𝑥+𝑚𝑚−1…𝑎𝑎1𝑥𝑥+𝑎𝑎0
𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘+𝑏𝑏𝑘𝑘−1𝑥𝑥𝑘𝑘−1+⋯𝑏𝑏1𝑥𝑥+𝑏𝑏0

 

The limit above is equal to: 

-  𝑎𝑎
𝑏𝑏

  if 𝑚𝑚 = 𝑘𝑘 

- 0 if 𝑘𝑘 > 𝑚𝑚 
- ∞ or -∞ if 𝑘𝑘 < 𝑚𝑚  

 

To solve the limit fast, we use: 

�1
𝑛𝑛

𝑖𝑖=1

= �𝑙𝑙0
𝑛𝑛

𝑖𝑖=1

= 𝑙𝑙 

�𝑙𝑙
𝑛𝑛

𝑖𝑖=1

=
𝑙𝑙(𝑙𝑙 + 1)

2
 

�𝑙𝑙2 =
𝑙𝑙(𝑙𝑙 + 1)(2𝑙𝑙 + 1)

6

𝑛𝑛

𝑖𝑖=1

 

�𝑙𝑙3
𝑛𝑛

𝑖𝑖=1

= ��𝑙𝑙
𝑛𝑛

1=1

�
2

= �
𝑙𝑙(𝑙𝑙 + 1)

2
�
2

=
𝑙𝑙2(𝑙𝑙 + 1)2

4
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Sequence & Series 

Sequence & Series 

Sequences 

They are on the form of either: �𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛+1, … � ; {𝑎𝑎𝑛𝑛}; {𝑎𝑎𝑛𝑛}𝑛𝑛=𝑎𝑎∞  (𝑎𝑎 = 1 most of the time but 
a sequence can start at any value) 

Where 𝑎𝑎𝑛𝑛 is the general term of a sequence.  

A sequence is increasing if 𝑎𝑎𝑛𝑛 < 𝑎𝑎𝑛𝑛+1 for every 𝑙𝑙 

A sequence is decreasing if 𝑎𝑎𝑛𝑛 > 𝑎𝑎𝑛𝑛+1 for every 𝑙𝑙 

Whether a sequence is decreasing or increasing, that sequence is called a monotonic sequence. 

A sequence is convergent if: 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝑎𝑎𝑛𝑛 exists and is finite. If 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝑎𝑎𝑛𝑛 does not exist or is infinite, we 

say that the sequence diverges. If 𝑙𝑙𝑙𝑙𝑚𝑚|
𝑛𝑛→∞

𝑎𝑎𝑛𝑛| = 0, then 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝑎𝑎𝑛𝑛 = 0. 

If a number 𝑚𝑚 exists so that 𝑚𝑚 ≤ 𝑎𝑎𝑛𝑛 for every 𝑙𝑙, the sequence is bounded below (in other 
words, none of the numbers in the sequence can be smaller or equal than 𝑚𝑚), 𝑚𝑚 is a lower 
bound and is not unique. 

If a number 𝑀𝑀 exists so that 𝑀𝑀 ≥ 𝑎𝑎𝑛𝑛 for every 𝑙𝑙, the sequence is bounded above (in other 
words, none of the numbers in the sequence can be larger or equal than 𝑀𝑀), 𝑀𝑀 is an upper 
bound and is not unique. 

A sequence that is bounded above and below is called a bounded sequence. 

Important: If a sequence is bounded and monotonic, then it must converge. 

 

Special types of sequences – geometric and arithmetic 

Geometric sequences are in the form: {𝑎𝑎𝑜𝑜𝑛𝑛}𝑛𝑛=0∞ , where 𝑜𝑜 is called the common ratio and 𝑎𝑎 is 
some constant and the first term. This sequence always converges if −1 < 𝑜𝑜 ≤ 1. 

The 𝑙𝑙𝑘𝑘ℎ term of a geometric sequence is defined as: 𝑎𝑎𝑜𝑜𝑛𝑛−1 

Arithmetic sequences are in the form of {𝑎𝑎,𝑎𝑎 + 𝑑𝑑,𝑎𝑎 + 2𝑑𝑑,𝑎𝑎 + 3𝑑𝑑, … ,𝑎𝑎 + (𝑙𝑙 − 1)𝑑𝑑, … } where 
𝑑𝑑 is called the common difference, 𝑑𝑑 is always equal to 𝑎𝑎𝑛𝑛+1 − 𝑎𝑎𝑛𝑛 (two consecutive terms) and 
𝑎𝑎 is the first term.  

The 𝑙𝑙𝑘𝑘ℎ term of an arithmetic sequence is defined as 𝑎𝑎 + (𝑙𝑙 − 1)𝑑𝑑. 
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Sequence & Series 

Series 

Defining series in terms of sequences 

Let {𝑎𝑎𝑛𝑛}𝑛𝑛=1∞  be a sequence. Then the series 𝑠𝑠𝑛𝑛 = 𝑎𝑎1 + 𝑎𝑎2 + ⋯+ 𝑎𝑎𝑛𝑛 = ∑ 𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1 . This called a 

partial sum. 

If 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝑠𝑠𝑛𝑛 exists and is finite, the series is convergent. Divergent otherwise. Note that if the series 

converges, using this method we can know the exact value it converges to. Not the same when 
using test for convergence, that just tell us whether a series converges. 

 

Basic test for divergence 

If 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

∑𝑎𝑎𝑛𝑛 ≠ 0, the series diverges.  

IMPORTANT: This test only says that a series is guaranteed to diverge but does not say anything 
about convergence. If the series terms do happen to go to zero, the series may or may not 
converge. For instance: 

� 1
𝑛𝑛2

∞

𝑛𝑛=1
  Converges 

� 1
𝑛𝑛

∞

𝑛𝑛=1
  Diverges 

But 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

1
𝑛𝑛

= 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

1
𝑛𝑛2

= 0 

Absolute convergence and convergence properties 

A series ∑𝑎𝑎𝑛𝑛 is said to be absolutely convergent if ∑|𝑎𝑎𝑛𝑛| also converges. 

IMPORTANT: A series that is absolutely convergent will also be convergent, but a series that is 
convergent may or may not be absolutely convergent. 

If ∑𝑎𝑎𝑛𝑛 converges and ∑|𝑎𝑎𝑛𝑛| diverges, the series is said to be conditionally convergent. 

Given ∑𝑎𝑎𝑛𝑛 and∑𝑏𝑏𝑛𝑛 and that they both converge: 

∑𝑐𝑐𝑎𝑎𝑛𝑛=𝑐𝑐∑𝑎𝑎𝑛𝑛 

∑(𝑎𝑎𝑛𝑛 ±  𝑏𝑏𝑛𝑛) = ∑𝑎𝑎𝑛𝑛 ± ∑𝑏𝑏𝑛𝑛 

∑𝑎𝑎𝑛𝑛∑𝑏𝑏𝑛𝑛 ≠ ∑𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 
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Sequence & Series 

Special type of series  

Geometric 

Just like a geometric sequence, there also exists a geometric series. This is one of the only series 
that we can find the actual convergence value, of course if it does converge. 

They have the following form: � 𝑎𝑎𝑜𝑜𝑛𝑛−1∞
𝑛𝑛=1  or ∑ 𝑎𝑎𝑜𝑜𝑛𝑛∞

𝑛𝑛=0  (they are both equal). 

The partial sum 𝑠𝑠𝑛𝑛 (the sum of the first 𝑙𝑙 terms) is: 𝑠𝑠𝑛𝑛 = 𝑎𝑎 1−𝑟𝑟𝑛𝑛

1−𝑟𝑟
, as mentioned earlier, 𝑜𝑜 is called 

the common ratio. 

Provided that −1 < 𝑜𝑜 < 1, � 𝑎𝑎𝑜𝑜𝑛𝑛−1∞
𝑛𝑛=1 = ∑ 𝑎𝑎𝑜𝑜𝑛𝑛∞

𝑛𝑛=0 = 𝒂𝒂
𝟏𝟏−𝒓𝒓

 

Telescoping 

A series of the form � 𝑎𝑎𝑚𝑚𝑙𝑙𝑚𝑚+𝑎𝑎𝑚𝑚−1𝑙𝑙+
𝑚𝑚−1…𝑎𝑎1𝑙𝑙+𝑎𝑎0

𝑏𝑏𝑘𝑘𝑙𝑙𝑘𝑘+𝑏𝑏𝑘𝑘−1𝑙𝑙𝑘𝑘−1+⋯𝑏𝑏1𝑙𝑙+𝑏𝑏0

∞

𝑛𝑛=0

, the denominator and numerator are 

polynomials with 𝒌𝒌 > 𝒎𝒎. The series converge if we can express the rational expression with 

terms that cancel each other. For example: � 1
42+13𝑛𝑛+𝑛𝑛2

∞

𝑛𝑛=1
= � ( 1

𝑛𝑛+6

∞

𝑛𝑛=1
− 1

𝑛𝑛+7
) = (1

7
− 1

8
) +

(1
8
− 1

9
) + (1

9
− 1

10
) + ⋯ 

As we see all numbers simplify except the first term, so this series converges to 1
7
. 

What if the series started at 𝑙𝑙 = 0 instead?  
Then we can use the fact that:  ∑ 𝑎𝑎𝑛𝑛 =∞

𝑛𝑛=0 𝑎𝑎0 + ∑ 𝑎𝑎𝑛𝑛∞
𝑛𝑛=1  

In our case, 𝑎𝑎0 = 1
6
− 1

7
= 1

42
. So � ( 1

𝑛𝑛+6

∞

𝑛𝑛=0
− 1

𝑛𝑛+7
) would converge to 1

42
+ 1

7
= 1

6
 

 

Harmonic  

For now, only know that the series � 1
𝑛𝑛

∞

𝑛𝑛=1
 is called the harmonic series and is divergent. 

 

 

 

 

 

@ Pi Pinnacle Tutors 21



 
Sequence & Series 

Tests for Convergence 

Reminder: These are only test for convergence, they do not tell us what the series converges to,  

they only tell us that the series converges. 

Integral test 

If 𝑓𝑓 is continuous, positive and a decreasing function on [𝑘𝑘,∞), and let 𝑎𝑎𝑛𝑛 = 𝑓𝑓(𝑙𝑙): 

If ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑘𝑘  converges, then ∑ 𝑎𝑎𝑛𝑛∞

𝑛𝑛=𝑘𝑘  converges. 

If ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥∞
𝑘𝑘  diverges, then ∑ 𝑎𝑎𝑛𝑛∞

𝑛𝑛=𝑘𝑘  diverges. 

 

Example: 

Determine the convergence or divergence of � 1
𝑛𝑛𝑙𝑙𝑛𝑛(𝑛𝑛)

∞

𝑛𝑛=2
 

Since 𝑓𝑓(𝑙𝑙) = 1
𝑛𝑛𝑙𝑙𝑛𝑛(𝑛𝑛)

 is continuous, decreasing and positive on [2,∞), the test can be applied. 

We can solve � 1
𝑥𝑥𝑙𝑙𝑛𝑛(𝑥𝑥)

𝑑𝑑𝑥𝑥
∞

2
 by setting 𝑢𝑢 = 𝑙𝑙𝑙𝑙(𝑥𝑥), then 𝑑𝑑𝑢𝑢 = 1

𝑥𝑥
𝑑𝑑𝑥𝑥. The indefinite integral is equal 

to ∫ 𝑙𝑙𝑙𝑙(𝑢𝑢)𝑑𝑑𝑢𝑢 = 𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙(𝑥𝑥)). With the bounds: 𝑙𝑙𝑙𝑙𝑚𝑚
𝑎𝑎→∞

𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙(𝑥𝑥))|2𝑎𝑎 = 𝑙𝑙𝑙𝑙𝑚𝑚
𝑎𝑎→∞

𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙(𝑎𝑎))− 𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙(2)) =

∞. The integral is divergent then so is the series. 

P-series test for convergence 

If 𝑘𝑘 > 0, then � 1
𝑛𝑛𝑝𝑝

∞

𝑛𝑛=𝑘𝑘
 converges if 𝑝𝑝 > 1 and diverges if 𝑝𝑝 ≤ 1. The harmonic series above is a 

p-series with 𝑝𝑝 = 1, since 1 ≤ 1, the series diverges. 

 

Comparison test for convergence 

Assume ∑𝑎𝑎𝑛𝑛 and ∑𝑏𝑏𝑛𝑛 are series with positive terms. 

If ∑𝑏𝑏𝑛𝑛 converges and 𝑎𝑎𝑛𝑛 ≤ 𝑏𝑏𝑛𝑛 for all 𝑙𝑙, then ∑𝑎𝑎𝑛𝑛 converges. 

If ∑𝑏𝑏𝑛𝑛 diverges and 𝑎𝑎𝑛𝑛 ≥ 𝑏𝑏𝑛𝑛 for all 𝑙𝑙, then ∑𝑎𝑎𝑛𝑛 diverges. 
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Sequence & Series 

Example: 

Determine the convergence or divergence of � � 𝑛𝑛
2𝑛𝑛+6

�
𝑛𝑛∞

𝑛𝑛=1
 

Usually, we use either the geometric series or p-series. The original series diverges if 𝑎𝑎𝑛𝑛 ≥ 𝑏𝑏𝑛𝑛 
with both series being positive and 𝑏𝑏𝑛𝑛 diverges. Note that if 𝑎𝑎𝑛𝑛 < 𝑏𝑏𝑛𝑛, the test is inconclusive. 

 

The original series converges if 𝑎𝑎𝑛𝑛 ≤ 𝑏𝑏𝑛𝑛 and both series are positive and 𝑏𝑏𝑛𝑛 converges. Note 
that if 𝑎𝑎𝑛𝑛 > 𝑏𝑏𝑛𝑛, the test is inconclusive. 

We can confidently say that  � 𝑛𝑛
2𝑛𝑛+6

�
𝑛𝑛
≤ � 𝑛𝑛

2𝑛𝑛
�
𝑛𝑛

for all n and � 𝑛𝑛
2𝑛𝑛
�
𝑛𝑛

=  �1
2
�
𝑛𝑛

.  

So 𝑏𝑏𝑛𝑛 = �1
2
�
𝑛𝑛

, is a geometric series with 𝑜𝑜 = 1
2
, since �1

2
� < 1, 𝑏𝑏𝑛𝑛 converges. 

Now we need to show that 0 ≤ 𝑎𝑎𝑛𝑛 ≤ 𝑏𝑏𝑛𝑛. You can do this by arguing that since the denominator 
on 𝑎𝑎𝑛𝑛 (the original series) is larger, then 𝑎𝑎𝑛𝑛 is smaller or equal than 𝑏𝑏𝑛𝑛. A more formal proof can 
be done using derivatives. 

 

Limit comparison test for convergence 

Assume ∑𝑎𝑎𝑛𝑛 and ∑𝑏𝑏𝑛𝑛 are series with positive terms. 

If 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

= 𝑐𝑐, where 0 < 𝑐𝑐 < ∞ 

Then either series converge, or both diverge. 

Example: Determine the convergence or divergence of � 1
√𝑛𝑛3 +4√𝑛𝑛

∞

𝑛𝑛=1
 

The original series ∑𝑎𝑎𝑛𝑛 will diverge if 𝑎𝑎𝑛𝑛 > 0 and 𝑏𝑏𝑛𝑛 > 0, as well as 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝛼𝛼𝑛𝑛
𝑏𝑏𝑛𝑛

= 𝐿𝐿 > 0 and ∑𝑏𝑏𝑛𝑛 

diverges. 

The original series ∑𝑎𝑎𝑛𝑛 will converge if 𝑎𝑎𝑛𝑛 > 0 and 𝑏𝑏𝑛𝑛 > 0, as well as 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝛼𝛼𝑛𝑛
𝑏𝑏𝑛𝑛

= 𝐿𝐿 > 0 and ∑𝑏𝑏𝑛𝑛 

converges. 

Again, usually, we use either the geometric series or p-series as ∑𝑏𝑏𝑛𝑛. 

Let 𝑏𝑏𝑛𝑛 = 1
4√𝑛𝑛

, this term carries much more weight than √𝑙𝑙3  when 𝑙𝑙 gets very large. � 1
4√𝑛𝑛

∞

𝑛𝑛=1
=

1
4
𝛴𝛴𝑛𝑛=1∞ 1

𝑛𝑛0.5 , this is a p-series with 𝑝𝑝 = 0.5 ≤ 1, therefore, ∑𝑏𝑏𝑛𝑛 diverges. 
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Sequence & Series 

Now solving 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

1

√𝑛𝑛3 +4√𝑛𝑛
1

4√𝑛𝑛

  (note that 𝑎𝑎𝑛𝑛 > 0 and 𝑏𝑏𝑛𝑛 > 0). 

𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

1

√𝑛𝑛3 +4√𝑛𝑛
1

4√𝑛𝑛

= 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

1
√𝑛𝑛3 +4√𝑛𝑛

⋅ 4√𝑛𝑛
1

= 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

4√𝑛𝑛
√𝑛𝑛3 +4√𝑛𝑛

. At this step, divide both the denominator and 

the numerator by √𝑙𝑙. We are left with: 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

4

𝑛𝑛-16+4
= 𝑙𝑙𝑙𝑙𝑚𝑚

𝑛𝑛→∞

4
1

𝑛𝑛
1
6
+4

= 4
0+4

= 1. Since 𝐿𝐿 > 0 and 

𝑏𝑏𝑛𝑛 diverges,𝑎𝑎𝑛𝑛 diverges. 

 

Alternating series test for convergence 

If the alternating series � (−1)𝑛𝑛−1𝑎𝑎𝑛𝑛
∞
𝑛𝑛=1  or equally  ∑ (−1)𝑛𝑛𝑎𝑎𝑛𝑛∞

𝑛𝑛=0  , 𝑎𝑎𝑛𝑛 > 0 

Is a decreasing sequence in 𝑎𝑎𝑛𝑛 (𝑎𝑎𝑛𝑛+1 ≤ 𝑎𝑎𝑛𝑛) for all 𝑙𝑙 and 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝑎𝑎𝑛𝑛 = 0, then 

� (−1)𝑛𝑛−1𝑎𝑎𝑛𝑛
∞
𝑛𝑛=1  and equally ∑ (−1)𝑛𝑛𝑎𝑎𝑛𝑛∞

𝑛𝑛=0  converge. 

Example: Determine the convergence or divergence of � (−1)𝑛𝑛+1 6
4𝑛𝑛+2

∞

𝑛𝑛=1
. First, note that 

� (−1)𝑛𝑛+1 6
4𝑛𝑛+2

∞

𝑛𝑛=1
= � (−1)𝑛𝑛 6

4𝑛𝑛+2

∞

𝑛𝑛=0
. 

The series will converge if � 6
4𝑛𝑛+2

∞

𝑛𝑛=1
 is a decreasing sequence and positive, which is the case. 

The larger the 𝑙𝑙, the smaller the terms. 

Since 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

6
4𝑛𝑛+2

= 0, the series converge. 

Ratio test for convergence  

This is a super common test when there are factorials in the series. 

Let 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛+1
𝑎𝑎𝑛𝑛

� = 𝐿𝐿 

If 𝐿𝐿 > 1, the series ∑ 𝑎𝑎𝑛𝑛∞
𝑛𝑛=1  is divergent. 

If 𝐿𝐿 < 1, the series ∑ 𝑎𝑎𝑛𝑛∞
𝑛𝑛=1  is absolutely convergent. 

If 𝐿𝐿 = 1, this test is inconclusive, and we cannot say anything about the convergence of the 
series. 

Example: Determine the convergence or divergence of � 𝑛𝑛𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=1
.  
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Sequence & Series 

𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�
𝑎𝑎𝑛𝑛+1
𝑎𝑎𝑛𝑛

� = 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�

𝑙𝑙𝑛𝑛+1
(𝑙𝑙 + 1)!
𝑙𝑙𝑛𝑛
𝑙𝑙!

� = 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�

𝑙𝑙𝑛𝑛 ⋅ 𝑙𝑙
𝑙𝑙! (𝑙𝑙 + 1)

𝑙𝑙𝑛𝑛
𝑙𝑙!

� = 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�
𝑙𝑙𝑛𝑛 ⋅ 𝑙𝑙

𝑙𝑙! (𝑙𝑙 + 1) ⋅
𝑙𝑙!
𝑙𝑙𝑛𝑛
� = 𝑙𝑙𝑙𝑙𝑚𝑚

𝑛𝑛→∞
�
𝑙𝑙

𝑙𝑙 + 1
� = 1 

The test is inconclusive. 

Root test for convergence  

Let 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�|𝑎𝑎𝑛𝑛|𝑛𝑛 = 𝐿𝐿 

If 𝐿𝐿 > 1, the series ∑ 𝑎𝑎𝑛𝑛∞
𝑛𝑛=1  is divergent. 

If 𝐿𝐿 < 1, the series ∑ 𝑎𝑎𝑛𝑛∞
𝑛𝑛=1  is absolutely convergent. 

If 𝐿𝐿 = 1, this test is inconclusive, and we cannot say anything about the convergence of the 
series. 

Example: Determine the convergence or divergence of � � 4𝑛𝑛4+2𝑛𝑛3+8
√7𝑛𝑛6+5𝑛𝑛3−12

�
𝑛𝑛∞

𝑛𝑛=1
 

𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�|𝑎𝑎𝑛𝑛|𝑛𝑛 = 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

���
4𝑙𝑙4 + 2𝑙𝑙3 + 8
√7𝑙𝑙6 + 5𝑙𝑙3 − 12

�
𝑛𝑛

�
𝑛𝑛

= 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

��
4𝑙𝑙4 + 2𝑙𝑙3 + 8
√7𝑙𝑙6 + 5𝑙𝑙3 − 12

�
𝑛𝑛

�

1
𝑛𝑛

= 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

��
4𝑙𝑙4 + 2𝑙𝑙3 + 8
√7𝑙𝑙6 + 5𝑙𝑙3 − 12

�� = 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

��

⎝

⎛
𝑙𝑙4(4 + 2

𝑙𝑙 + 8
𝑙𝑙4)

�𝑙𝑙6(7 + 5
𝑙𝑙3 −

12
𝑙𝑙6)⎠

⎞��

= 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝑙𝑙4(4 + 2
𝑙𝑙 + 8

𝑙𝑙4)

√𝑙𝑙6�7 + 5
𝑙𝑙3 −

12
𝑙𝑙6

= 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝑙𝑙4(4 + 2
𝑙𝑙 + 8

𝑙𝑙4)

𝑙𝑙3�7 + 5
𝑙𝑙3 −

12
𝑙𝑙6

= 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

𝑙𝑙
(4 + 2

𝑙𝑙 + 8
𝑙𝑙4)

�7 + 5
𝑙𝑙3 −

12
𝑙𝑙6

= ∞
4 + 0 + 0
√7 + 0 − 0

= ∞ 

 

This series diverges.  
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Power series 

A power series is in the form ∑ 𝑐𝑐𝑛𝑛(𝑥𝑥 − 𝑎𝑎)𝑛𝑛∞
𝑛𝑛=0  

All functions can be expressed as a power series. 

Recall that for a geometric series, the following is true ∑ 𝑥𝑥𝑛𝑛∞
𝑛𝑛=0 = 1

1−𝑥𝑥
, for |𝑥𝑥| < 1. 

Example, if we want to express the following function: 2𝑥𝑥
4+𝑥𝑥2

 as a representation of a power 

series: We must manipulate: 2𝑥𝑥
4+𝑥𝑥2

 until it has the form of 1
1−𝑥𝑥

. 

2𝑥𝑥
4 + 𝑥𝑥2

= 2𝑥𝑥
1

4 + 𝑥𝑥2
= 2𝑥𝑥

1

4(1 + 𝑥𝑥2
4 )

=
𝑥𝑥
2

1

(1 + 𝑥𝑥2
4 )

=
𝑥𝑥
2

1

(1 − (−𝑥𝑥
2

4 ))
 

Then 
2𝑥𝑥

4+𝑥𝑥2
= ∑ 𝑥𝑥

2
�- 𝑥𝑥

2

4
�
𝑛𝑛

=∞
𝑛𝑛=0 ∑ 𝑥𝑥1

21
�- 𝑥𝑥

2

22
�
𝑛𝑛

= ∑ (-1)𝑛𝑛 𝑥𝑥1

21
�𝑥𝑥

2

22
�
𝑛𝑛

=∞
𝑛𝑛=0

∞
𝑛𝑛=0

∑ (-1)𝑛𝑛 𝑥𝑥1

21
�𝑥𝑥

2𝑛𝑛

22𝑛𝑛
� =∞

𝑛𝑛=0 ∑ (-1)𝑛𝑛 𝑥𝑥2𝑛𝑛+1

22𝑛𝑛+1
∞
𝑛𝑛=0  

After having converted our function to series, we can find the radius of convergence 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏.  
Even after finding said radius, it does not mean that the whole series is converging, only in the 
given radius. The radius of convergence is 𝑅𝑅 = 𝑏𝑏−𝑎𝑎

2
. 

 

In the example above, we set 𝑎𝑎𝑛𝑛 = (-1)𝑙𝑙 𝑥𝑥
2𝑙𝑙+1

22𝑙𝑙+1,  and 𝑎𝑎𝑛𝑛+1 = (-1)𝑙𝑙+1 𝑥𝑥2𝑙𝑙+3

22𝑙𝑙+3 .Using the ratio 

test: 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛+1
𝑎𝑎𝑛𝑛

� = 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�
(-1)𝑙𝑙+1⋅𝑥𝑥

2𝑙𝑙+3

22𝑙𝑙+3

(-1)𝑙𝑙⋅𝑥𝑥
2𝑙𝑙+1

22𝑙𝑙+1

�. Skipping the algebra, this simplifies to: 𝑙𝑙𝑙𝑙𝑚𝑚
𝑛𝑛→∞

�- 𝑥𝑥
2

4
�. Since 

the 𝑙𝑙 is not present anymore, we can safely remove the limit. Also, since there is an absolute 
value, we can also remove the minus sign. 

So 𝐿𝐿 = �𝑥𝑥
2

4
�. The ratio test tells us that the series is convergent only if 𝐿𝐿 < 1. 

�𝑥𝑥
2

4
� < 1 ⇒ |𝑥𝑥2| < 4 ⇒ −2 < 𝑥𝑥 < 2. The radius of convergence is then: 𝑅𝑅 = 2−(−2)

2
= 2 

Once we have found the radius of convergence, we can now find the interval of convergence. 
To do so, we also must test the endpoints to see if we include or exclude certain bounds. 
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Sequence & Series 

First, if 𝑥𝑥 = −2: � (-1)𝑙𝑙 ⋅ (-2)2𝑙𝑙+1

22𝑙𝑙+1

∞

𝑛𝑛=0

= � (-1)𝑙𝑙(-1)2𝑙𝑙+1 ⋅ (2)2𝑙𝑙+1

22𝑙𝑙+1

∞

𝑛𝑛=0

=

� (-1)3𝑙𝑙+1 =
∞

𝑛𝑛=0
−� (-1)𝑙𝑙

∞

𝑛𝑛=0
. This is a geometric series with 𝑜𝑜 = −1. The geometric 

series converges if |𝑜𝑜| < 1, since |𝑜𝑜| < 1 → |−1| < 1 → 1 < 1. Since 1 is not less than 1, the 
series diverges, which means it’s divergent at the endpoint if 𝑥𝑥 = −2. 

Now, let’s test 𝑥𝑥 = 2: � (-1)𝑙𝑙 ⋅ 22𝑙𝑙+1

22𝑙𝑙+1

∞

𝑛𝑛=0

= � (-1)𝑙𝑙
∞

𝑛𝑛=0
. This is the same case for above, 

which means it’s divergent at the endpoint if 𝑥𝑥 = 2. 

Therefore, our interval of convergence is :−2 < 𝑥𝑥 < 2. 

We do not need to test the bounds if we only need to find the ratio of convergence. 
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